Exam. Code : 103205
 Subject Code : 8059

B.A./B.Sc. $5^{\text {th }}$ Semester (Old Syllabus 2016) MATHEMATICS
 Paper-II (Linear Algebra)

Time Allowed- 3 Hours]

[Maximum Marks-50
Note :-Attempt five questions in all, selecting at least two questions from each Section.

SECTION-A

I. (a) Prove that $\langle\mathrm{Q}, *\rangle$ where Q is the set of all rationals except 1 , is an abelian group under binary operation * as defined as $\mathrm{a} * \mathrm{~b}=\mathrm{a}+\mathrm{b}-\mathrm{ab}$.
(b) Prove that the set Z of integers is a commutative ring with respect to usual addition and multiplication of integers.
II. (a) If W_{1} and W_{2} are any two subspaces of a vector space $\mathrm{V}(\mathrm{F})$, prove that $\mathrm{W}_{1}+\mathrm{W}_{2}=\left\{\mathrm{x}+\mathrm{y}: \mathrm{x} \in \mathrm{W}_{1}, \mathrm{y} \in \mathrm{W}_{2}\right\}$ is a subspace of $\mathrm{V}(\mathrm{F})$.
(b) Let $\mathrm{v}_{1}=(1,2,-1) ; \mathrm{v}_{2}=(2,-3,2) ; \mathrm{v}_{3}=(4,1,3)$ and $v_{4}=(-3,1,2)$ be the vectors in $\mathbb{R}^{3}(\mathbb{R})$, show that $\mathrm{L}\left(\left\{\mathrm{v}_{1}, \mathrm{v}_{2}\right\}\right) \neq \mathrm{L}\left(\left\{\mathrm{v}_{3}, \mathrm{v}_{4}\right\}\right)$.

336(2118)/DAG-10856 1
(Contd.)
www.a2zpapers.com www.a2zpapers.com
d free old Question papers gndu, ptu hp board, punjak
III. (a) If V(F) be a vector space, prove that the set S of non-zero vectors, $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots . . \mathrm{v}_{\mathrm{n}} \in \mathrm{V}$ is L.D. iff some element of S is a linear combination of others.
(b) If $\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}$ are linearly independent vectors of $\mathrm{V}(\mathrm{F})$, show that the vectors $\mathrm{v}_{1}+\mathrm{v}_{2}, \mathrm{v}_{2}+\mathrm{v}_{3}, \mathrm{v}_{3}+\mathrm{v}_{1}$ are L.I. 5,5
IV. (a) If U and W are two subspaces of a finite dimensional vector space $V(F)$, prove that $\operatorname{dim}(U+W)=\operatorname{dim} U+\operatorname{dim} W-\operatorname{dim}(U \cap W)$.
(b) Extend $\{(3,-1,2)\}$ to two different bases of \mathbb{R}^{3}. 6,4
V. (a) Let W_{1} and W_{2} be the subspaces of $\mathbb{R}^{3}(\mathbb{R})$, where $\mathrm{W}_{1}=\{(\mathrm{a}, \mathrm{b}, \mathrm{c}): \mathrm{b}=2 \mathrm{a}, \mathrm{c}=\mathrm{a}+\mathrm{b}\}$
$\mathrm{W}_{2}=\{(\mathrm{a}, \mathrm{b}, \mathrm{c}): 2 \mathrm{a}+\mathrm{b}-3 \mathrm{c}=0\}$
Find a basis and dimension of :-
(i) W_{1}
(ii) W_{2}
(b) Find a basis and dimension of the solution space S of the system of equations : $\mathrm{x}+2 \mathrm{y}-4 \mathrm{z}+3 \mathrm{~s}-\mathrm{t}=0$,

$$
x+2 y-2 z+2 s+t=0,2 x+4 y-2 z+3 s+4 t=0
$$

SECTION-B

V.I: (a) Find $T(x, y, z)$ where $T: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is defined by $\mathrm{T}(1,-1,1)=3, \mathrm{~T}(0,1,-2)=1, \mathrm{~T}(0,0,1)=-2$.
(b) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be a L.T. defined as $T(x, y)=(x+y, x-y, y)$.
$\operatorname{Verify} \operatorname{Rank}(T)+\operatorname{Nullity}(T)=\operatorname{dim} \mathbb{R}^{2} . \quad 4,6$
VII. (a) Find a linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ whose range space is generated by $(1,2,0,-4)$ and $(2,0,-1,-3)$.
(b) Give an example of two linear transformations T_{1} and T_{2} such that $\mathrm{T}_{1} \mathrm{~T}_{2} \neq \mathrm{T}_{2} \mathrm{~T}_{1}$.

6,4
VIII.(a) Prove that a linear transformation $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ is non-singular, iff the set of images of L.T. set is L.I.
(b) Let $\mathrm{T}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be defined by $T(x, y, z)=(2 x, 4 x-y, 2 x+3 y-z)$ Show that T is invertible and find T^{-1}.
IX. (a) Let $\mathrm{V}(\mathrm{F})$ and $\mathrm{W}(\mathrm{F})$ be finite dimensional vector spaces over the same field F and $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ be a L.T. If B_{1} and B_{2} be the ordered basis of V and W respectively, prove that for any vector $\mathrm{v} \in \mathrm{V}$,

$$
\left[\mathrm{T} ; \mathrm{B}_{1}, \mathrm{~B}_{2}\right]\left[\mathrm{v} ; \mathrm{B}_{1}\right]=\left[\mathrm{T}(\mathrm{v}) ; \mathrm{B}_{2}\right] .
$$

(b) Let V be a V.S. of all functions $\mathrm{f}: \mathbb{R} \rightarrow \mathbb{R}$. Definc a differential operator D on V as $\mathrm{D}(\mathrm{f})=\frac{\mathrm{df}}{\mathrm{dt}} \forall \mathrm{f} \in \mathrm{V}$. Find the matrix of D w.r.t. basis $B=\{1, t, \sin 3 t, \cos 3 t\}$. 5,5
X. (a) Find the matrix representation of the linear transformation $\mathrm{T}: \mathbb{R}^{2} \rightarrow \mathrm{R}^{3}$ defined by $\mathrm{T}(\mathrm{x}, \mathrm{y})=(3 \mathrm{x}-2 \mathrm{y}$, $0, x+4 y)$ w.r.t. ordered bases. $B_{1}=\{(1,1),(0,2)\}$ and $B_{2}=\{(1,1,0),(1,0,1),(0,1,1)\}$ for \mathbf{R}^{2} and \mathbf{R}^{3} respectively.
(b) If the matrix of a linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ relative to usual basis, is $\left[\begin{array}{rrr}0 & 1 & 1 \\ 1 & 0 & -1 \\ -1 & -1 & 0\end{array}\right]$. Find the matrix of T relative to the basis

$$
\mathrm{B}_{1}=\{(0,1,-1),(-1,1,0),(1,-1,1)\} . \quad 5,5
$$

